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Animals often use assessment signals to communicate information about their quality to a variety of receivers, including potential

mates, competitors, and predators. Butwhatmaintains reliable signaling and prevents signalers from signaling a better quality than

they actually have? Previous work has shown that reliable signaling can be maintained if signalers pay fitness costs for signaling

at different intensities and these costs are greater for lower quality individuals than higher quality ones. Models supporting this

idea typically assume that continuous variation in signal intensity is perceived as such by receivers. In many organisms, however,

receivers have threshold responses to signals, in which they respond to a signal if it is above a threshold value and do not respond

if the signal is below the threshold value. Here, we use both analytical and individual-based models to investigate how such

threshold responses affect the reliability of assessment signals. We show that reliable signaling systems can break down when

receivers have an invariant threshold response, but reliable signaling can be rescued if there is variation among receivers in the

location of their threshold boundary. Our models provide an important step toward understanding signal evolution when receivers

have threshold responses to continuous signal variation.

KEY WORDS: Animal communication, honest signals, mate choice, sensory ecology, sexual selection, signaling theory.

In contexts ranging from mate choice to aggression, animals use

signals to assess each other (Maynard Smith and Harper 2003;

Searcy and Nowicki 2005; Seyfarth et al. 2010). These signals

can include any behavioral or morphological trait of one indi-

vidual (the “signaler”) that has evolved to convey information to

another individual (the “receiver”), such as the song of a bird,

the sex pheromone of a moth, or the aposematic coloration of

a poison frog (Bradbury and Vehrencamp 2011). The informa-

tion conveyed in signals often regards the quality of the sig-

naler, such as the signaler’s size (e.g., call frequency in frogs;

Ryan 2001) or physiological condition (e.g., plumage brightness

in some birds; Lindström and Lundström 2000). A central ques-

tion for researchers studying animal signaling systems is, what

maintains the reliability of assessment signals (Searcy and Now-

icki 2005)? That is, if it benefits signalers to produce a signal

indicating a better quality than they actually have, why do sig-

nalers produce a signal that reliably (“honestly”) communicates

quality?

In a foundational verbal model, Zahavi (1975) suggested that

assessment signals could be reliable indicators of quality if sig-

nalers pay costs for expressing signals. This idea was termed

the “handicap principle” in that signalers of the highest qual-

ity could afford to pay greater handicaps to produce a signal

than could signalers of lower quality. Although reliable signal-

ing was shown not to evolve when Zahavi’s original assumptions

were made explicit in genetic models (Maynard Smith 1976;

Kirkpatrick 1986), Grafen (1990a, 1990b) later showed, us-

ing both population genetic and game theory models, that the
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handicap principle can lead to the evolution of reliable signal-

ing if two conditions are met. First, the costs of signaling at a

given intensity (e.g., producing a large or colorful signal) must

be greater for signalers of lower quality compared to signalers

of higher quality. Second, receivers should be able to assess con-

tinuous variation in signal intensities and thereby gauge signaler

quality; that is, as signal intensity increases continuously, so does

the benefit the signaler gains from receivers. (Note that Penn

and Számadó (2020) suggested that Grafen’s models are substan-

tively different from Zahavi’s original conceptualization. Here,

we refer to them both as the “handicap principle” for consistency

with the literature.) Johnstone (1997) later developed graphical

versions of Grafen’s (1990a, 1990b) mathematical models, il-

lustrating how the optimal level of signaling—the equilibrium

point at which the net benefits are greatest—will be different for

lower versus higher quality signalers. This variation in equilib-

rium points leads to reliable signaling (Johnstone 1997).

The cost-based reliable signaling theory developed by Za-

havi (1975), Grafen (1990a, 1990b), and Johnstone (1997) has

played a crucial role in our understanding of the evolution of an-

imal signals (Maynard Smith and Harper 2003; Searcy and Now-

icki 2005). Other studies have recognized, however, that some

assumptions of these models do not necessarily reflect the real-

ity of animal signaling systems. For example, the initial mod-

els of Grafen (1990a, 1990b) did not incorporate the concept of

perceptual error—when a signaler’s true signal value is not per-

ceived as such by a receiver. In a subsequent series of models,

Grafen and Johnstone showed that adding perceptual error into

models of signal evolution makes otherwise continuous signal-

ing systems more discrete, such that fewer equilibrium signaling

values exist (Grafen and Johnstone 1993; Johnstone 1994; John-

stone and Grafen 1992a). Reliable signaling can be maintained

in these models as long as signalers with greater signal intensity

are more likely to be perceived as having higher intensity sig-

nals (Johnstone and Grafen 1992a). Furthermore, a continuum of

equilibrium signaling values reemerges if perceptual errors are

more common at higher signal intensities or if signaling costs in-

crease more rapidly at higher signal intensities (Johnstone 1994).

Other researchers have found results similar to those of Grafen

and Johnstone when incorporating other aspects of biological re-

alism into models of signal evolution: when the assumptions of

the classic handicap models are relaxed, signaling systems are

altered, but reliability can be maintained (e.g., Lachmann and

Bergstrom 1998; Proulx 2001).

The aforementioned studies have advanced our understand-

ing of signal evolution, but they have all maintained the assump-

tion that receivers can assess continuous variation in signal in-

tensities and thereby gauge signaler quality; that is, as signal in-

tensity increases continuously, so does the benefit the signaler

gains from receivers. However, some organisms have threshold

responses to assessment signals in which signal receivers respond

in a binary manner to continuous variation in signal intensity

(e.g., Masataka 1983; Zuk et al. 1990; Reid and Stamps 1997;

Stoltz and Andrade 2010; Beckers and Wagner 2011; Robinson

et al. 2011; Roff 2015). In these systems, receivers respond to a

signal if it is above a threshold value and do not respond if the

signal is below the threshold value. For example, female variable

field crickets (Gryllus lineaticeps) prefer males producing chirps

at rates above 3.0 chirps per second but do not discriminate be-

tween chirp rate variants that both lie either above or below this

threshold (Beckers and Wagner 2011).

Threshold responses may reflect a behavioral decision by re-

ceivers (e.g., Beckers and Wagner 2011), but they may also be

linked to an animal’s perceptual system. Categorical perception,

for example, occurs when continuous variation in a stimulus is

perceived as belonging to distinct categories, with individuals

showing an increased capacity to discriminate stimuli that fall

into different categories as compared to stimuli that fall in the

same category (Harnad 1987; Green et al. 2020). For example,

a recent study found that female zebra finches (Taeniopygia gut-

tata) show categorical perception of the orange to red color con-

tinuum representative of male beak color:females labeled eight

color variants as lying in two categories and showed better dis-

crimination of cross-category variants as compared to equally

spaced within-category variants (Caves et al. 2018). Categorical

perception of signal variation, such as that found in zebra finches

(Caves et al. 2018), túngara frogs (Baugh et al. 2008), and spar-

rows (Nelson and Marler 1989), would likely lead to a threshold

response if categories are treated in an binary fashion, thereby

violating the assumption of continuous assessment in cost-based

signaling models.

Although some models have investigated when different

types of threshold responses will evolve (Janetos 1980; Real

1990; Svennungsen et al. 2011; Bleu et al. 2012), few stud-

ies have explored how threshold responses influence the evolu-

tion of reliable signaling. Many game theoretical approaches to

studying reliable signaling have relaxed the assumption that re-

ceivers assess continuous variation in signal intensities (Enquist

1985; Maynard Smith 1991; Hurd 1995; Számadó 1999). How-

ever, game theoretic models have typically been of discrete sig-

naling games in which both signalers and receivers choose from

a discrete set of behaviors (e.g., signalers send either a low- or

high-quality signal and receivers either attack or do not attack) or

continuous signaling games in which both signalers and receivers

have a continuum of possible states (Bergstrom and Lachmann

1997; Johnstone and Grafen 1992b). Here, we are interested in

the case in which signalers are capable of signaling at any in-

tensity on a continuous range (e.g., tail length can be any length

from 5-15 mm), but receivers have a binary threshold response

(e.g., mate with signaler if and only if tail is longer than 10 mm).
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Broom and Ruxton (2011) have previously explored such a sce-

nario, showing that when receivers respond to signals in a thresh-

old manner it leads to the evolution of “all-or-nothing” signaling

systems. That is, signalers with a quality below a critical value

all produce the same cheap signal, whereas signalers with a qual-

ity above the critical value all produce the same expensive signal.

The model of Broom and Ruxton (2011) assumed that receivers

all had the same threshold value. However, it is conceivable that

receivers could vary in their threshold values, for example, due

to environmental conditions or developmental history. Here, we

explore the evolutionary implications of such interindividual vari-

ation in threshold values.

We begin by developing a model of signal evolution that as-

sumes receivers respond to continuous signal variation in a con-

tinuous fashion (akin to the models of Johnstone 1997; Grafen

1990a, 1990b). This model requires some simplifying assump-

tions, but it provides a clear demonstration of how reliable sig-

nals evolve when there is not a threshold response (the typical

assumption). We then show how threshold responses to continu-

ous signal variation can remove the variation in equilibrium sig-

nal intensities central to current models of reliable signaling, but

how introducing interindividual variation in threshold responses

can rescue the evolution of reliable signals. In addition to these

analytical models, we also develop individual-based simulations

to assess the robustness of our conclusions under more realistic

ecological and genetic assumptions, as well as to ask what role

additional complexities in receiver choice can have in the evolu-

tion of signals responded to in a threshold fashion.

We focus on the case in which the signaling behavior of the

signaler population evolves to optimize fitness and the location

of the mean threshold value of the receiver population does not

evolve. This assumption is relevant to many biological scenar-

ios in which the threshold value of the receiver population is

evolutionarily constrained. For instance, if a receiver’s thresh-

old value is determined by its perceptual machinery rather than

a behavioral choice, as with categorical perception, the thresh-

old value might be constrained by its neural physiology (Green

et al. 2020; Mason 2020). The threshold value of the receiver

population might also be maintained by stabilizing selection from

other ecologically important signals and cues. For example, con-

sider a generalist predator (receiver) under selection to avoid eat-

ing an aposematically colored toxic prey species (signaler). The

threshold value of aposematic coloration above which the preda-

tor will not attack an individual of the focal prey species might

be constrained by selection to detect the coloration of other prey

species. Finally, threshold values might be constrained by a lack

of additive genetic variation in the trait or strong genetic link-

age with other important phenotypes (Blows and Hoffmann 2005;

Gomulkiewicz and Houle 2009). This assumption that the mean

threshold value of the receiver population does not evolve simpli-

fies our analytical models, leading to clear predictions. However,

we also explore the situation of signaler-receiver coevolution in

our individual-based simulations and find that the general con-

clusions from our analytical models still hold in the presence of

signaler-receiver coevolution.

Continuous Assessment Model
We start by constructing a model of signal evolution that assumes

receivers respond to continuous signal variation in a continuous

fashion (i.e., there is not a threshold response). This model can

be thought of as an intermediate between those of Grafen (1990a,

1990b) and Johnstone (1997): it can be mathematically diffi-

cult to incorporate ecological complexity into Grafen’s models,

whereas Johnstone’s model is purely graphical and thus cannot be

analytically evaluated. This model, and our other analytical mod-

els below, are rather simple models in which we do not model

the evolution of receivers. Instead, we assume that receivers have

a fixed reaction norm that is a continuous function that scales

positively with signal intensity (i.e., receivers are more likely to

respond to signals of greater intensity). We also assume that the

optimal signal intensity for a signaler is that which maximizes

its net benefit. Therefore, the equilibrium signal intensity is de-

fined as the maximization of the difference between b(s) and c(s),

where b(s) is the fitness benefit received by a signaler for produc-

ing a signal intensity s and c(s) is the fitness cost associated with

producing signal intensity s.

In line with previous models (Johnstone 1997; Grafen

1990a, 1990b), we assume that fitness costs increase linearly with

signal intensity and that these costs increase more rapidly for low-

quality signalers than high-quality ones (the same qualitative re-

sults should apply for any monotonically increasing cost func-

tion). Let c(s) = α(q)s, where α(q) is a function relating a sig-

naler’s quality, q, to its cost of signaling. For analytical tractabil-

ity, we assume that signaling cost decreases linearly with quality

and that 0 ≤ q ≤ 1 (q = 0 are the lowest quality individuals and

q = 1 are the highest quality individuals). Therefore,

c(s) = [ac0 + a(1 − q)]s, (1)

where a is the rate at which the slope of the cost function de-

creases with quality, and c0 determines the minimum possible

cost of signaling, ac0. Following the graphical representation of

Johnstone (1997), we assume that signaler benefit is a saturating

function of signal intensity such that

b(s) = rs

1 + ds
, (2)

where r is the rate at which benefit increases with signal in-

tensity and d is the degree of saturation with signal inten-

sity (plots of eqs. [1] and [2] can be seen in Fig. 1A). More
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Figure 1. The evolution of reliable signals in a model with continuous assessment. (A) Relationship between signal intensity and fitness

costs or benefits for signalers of low (q = 0.2) and high (q = 0.6) quality, given c0 = 0. Arrows denote the equilibrium signal intensity,

s∗, for low- and high-quality individuals, which occurs where the difference between benefit and cost is the greatest. (B) Relationship

between signaler quality and equilibrium signal intensity given by equation (3). Three different values for c0 are shown. Note that higher

quality individuals signal at greater signal intensities and that panel A closely matches Johnstone’s (1997, fig. 7.2) graphical model. In

both panels, a = 0.5, r = 4, and d = 4.

mechanistically, the benefit function can be thought of as a func-

tion of the receivers’ reaction norm, which is not explicitly mod-

eled here but the same qualitative results should apply for any

continuous, monotonically increasing benefit function.

Maximizing the difference between equations (1) and (2)

gives the equilibrium signal intensity

s∗ =
√

r
a(1+c0−q) − 1

d
(3)

(we provide a derivation in the appendix, section A1, in the Sup-

porting Information). This equation shows that higher quality sig-

nalers will have greater signal intensities than lower quality ones

(Fig. 1B). In other words, signal intensity is a reliable indica-

tor of quality. Figure 1A demonstrates this pattern for two dif-

ferent qualities, showing that, for high-quality individuals, the

maximum net benefit is at a higher signal intensity than for low-

quality individuals. With greater values of c0, the relationship be-

tween signaler quality and signal intensity becomes more linear

and less steep (Fig. 1B). For simplicity, in all other figures, we

assume that c0 = 0.

The results of this model are in line with those of Grafen

(1990a, 1990b) and Johnstone (1997). This modeling approach

also provides a useful framework that can be adapted to analyt-

ically explore animal signaling in different biological scenarios,

such as threshold assessment.

Threshold Assessment Model
FIXED THRESHOLD

We next adapt the above model so that receivers respond to sig-

nal variation in a binary fashion (i.e., a threshold response). That

is, if a signal is below a threshold value T, the receiver assesses

the signal as low-quality and if the signal is above T, the receiver

assesses the signal as high-quality. Because a signaler’s benefit

depends on the receiver’s assessment, the benefit of signaling at

a given intensity can be thought of as the proportion of the re-

ceiver population that assesses the signal as high-quality. For ex-

ample, in a mating context where males are signaling to females,

a male’s benefit of signaling would be the proportion of females

in the population that assess it as a high-quality mate and there-

fore mate with it. Alternatively, in the context of aggressive in-

teractions, the signaler’s benefit is the proportion of competitors

that identify the signaler as high-quality and give up a contest

against the signaler. We assume that signal intensities at or above

the receiver threshold gain maximum benefits, whereas signal in-

tensities below the threshold gain no benefit. Therefore,

b(s)

{
0 if s < T,

1 if s ≥ T,
(4)

where 1 is the maximum benefit at which every receiver assesses

the signaler as high-quality.

In this model, there are only two equilibrium signal intensi-

ties: the baseline signal intensity 0 and the threshold value T. This

is an example of an all-or-nothing signaling system and thus our

model agrees with that of Broom and Ruxton (2011). If the costs

to an individual of signaling above the threshold are so high that

there is never a net benefit of signaling, that individual will signal

at the baseline signal intensity of 0. In all other cases, individuals

signal exactly at the threshold value (Fig. 2A, B). This makes in-

tuitive sense: there is no benefit to signaling below the threshold

value because these signals are all assessed as low-quality, but
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Figure 2. In a model with strict threshold assessment, signalers either evolve “all-or-nothing” signals (A and B) or all signalers signal

at the same value (C and D). Panels A and C show graphical depictions of the relationship between signal intensity and fitness costs or

benefits for signalers of low (q = 0.2) and high (q = 0.8) quality. The dashed gray lines indicate the receiver threshold value. Arrows

denote the equilibrium signal intensity, s∗, for low- and high-quality individuals, which occurs where the difference between benefit and

cost is the greatest. Note that in panel C, the equilibrium signal intensity is the same for low- and high-quality individuals. Panels B and

D show the relationship between signaler quality and signal intensity. In panels A and B, a = 2.0 and in panels C and D, a = 0.5. In all

panels, T = 1 and c0 = 0.

there is also no benefit of signaling any higher than exactly at the

threshold value, because this would only accrue additional signal-

ing costs. The result of this effect is that signalers on either side of

the threshold will have identical signal intensities of either zero

below the threshold or exactly at the threshold value (Fig. 2B). In

fact, if we assume that for all qualities q there is some signal in-

tensity s where b(s) > c(s), all individuals will signal exactly at

the threshold value as is shown in Figure 2C, D. Furthermore, be-

cause individuals signaling at an intensity of 0 are never assessed

as high-quality, a signal intensity of 0 would only be evolution-

arily stable if being assessed as high-quality was not strictly nec-

essary for reproduction. Otherwise, all signalers would signal at

the threshold value, irrespective of costs. When all signalers sig-

nal at the threshold value (e.g., Fig. 2D), there is no information

provided by the signal and thus, if receivers’ threshold responses

are not ecologically, physiologically, or genetically constrained,

we would expect receivers to evolve to ignore the signals alto-

gether (an outcome conceptually similar to the lek paradox; Bor-

gia 1979; Tomkins et al. 2004; Kotiaho et al. 2008).

We focus on the case of a receiver with a binary response,

but it is worth noting that the results of this model can be gener-

alized for categorical responses in which receivers have multiple

possible assessment categories (e.g., lowest quality, low-quality,

high-quality, highest quality). As with the binary case, the num-

ber of equilibria signal intensities will be equal to the number of

assessment categories.

The results of this model are similar to those of Lachmann

and Bergstrom (1998; see also Bergstrom and Lachmann 1997,

1998) who also showed that there are evolutionarily stable sig-

naling strategies in which different quality signalers signal at the

same intensity (they refer to these strategies as “pooling equilib-

ria”). However, their approach assumes that only a finite number

of signal types are possible, whereas our model, as well as the

model of Broom and Ruxton (2011), allows for a continuum of

possible signal intensities and a finite number of signal intensities

emerge as a prediction. The models of Lachmann and Bergstrom

(1998) and Broom and Ruxton (2011) are in some ways more

general than ours because they consider receiver coevolution. By

assuming that receiver threshold values are evolutionarily con-

strained, we were able to obtain similar results with a mathemati-

cally simpler model that can now be adapted to consider variation

in threshold values.
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VARIABLE THRESHOLD

The model above assumes a fixed threshold value for all re-

ceivers, but it is likely that threshold values will vary among

receivers. For example, the sample of female crickets tested by

Beckers and Wagner (2011) showed a threshold of chirp rate for

mate choice decisions, but there was also within-sample variance

around this threshold value. Similarly, predators may vary in the

threshold value of an aposematic signal required to induce avoid-

ance (e.g., Endler and Mappes 2004). Because we assume that

receivers do not evolve in this model (which implies threshold

values are evolutionarily constrained), our model is most rele-

vant to cases in which variation in threshold values is not ge-

netically determined and rather emerges because of environmen-

tal conditions or developmental history (in the COEVOLUTION

OF SIGNALERS AND RECEIVERS section below, we evaluate

the effects of allowing threshold evolution using individual-based

simulations). To model a variable threshold, we now assume that

the threshold values of the receiver population are normally dis-

tributed with mean T̄ and variance σ2. Note that this convention

implies that receivers can have negative threshold values: if a re-

ceiver’s threshold value is less than or equal to 0, it evaluates all

signalers as high-quality because the minimum signal intensity is

0. Once again assuming that the benefit of the signal is the pro-

portion of the receiver population that assesses the signal as high

quality, it follows that

b(s) =
s∫

−∞

1√
2πσ2

exp

[
−(T − T̄ )2

2σ2

]
dT , (5)

which simply gives that the benefit of signaling at intensity s is

the area less than s under a normal distribution with mean T̄ and

variance σ2. For example, if a signal intensity of s is assessed as

high-quality by 20% of the receiver population, b(s) = 0.2.

Given equation (5) and assuming that costs still follow equa-

tion (1), the equilibrium signal intensity is

s∗ = T̄ +
√

−2σ2 ln
(

a(1 + c0 − q)
√

2πσ2
)
. (6)

As with equation (3), this equation provides the equilibrium

signaling intensity for different qualities of the signalers. How-

ever, if b(0) > s∗ or if equation (6) is undefined, which occurs if

a(1 + c0 − q)
√

2πσ2 ≥ 1, the equilibrium signaling value is in-

stead 0 (see the appendix in the Supporting Information [section

A1, Fig. A9] for more details and for the derivation of eq. [6]).

Equation (6) shows that incorporating variance into the re-

ceivers’ threshold values restores the reliability of the signaling

system such that signalers of different qualities receive maximum

net benefits at different signal intensities (Fig. 3A). Furthermore,

with greater variance, signal intensity increases faster with in-

creasing quality. That is, for signalers of the same difference in

quality, increasing variance in receiver thresholds leads to a larger

difference in signal intensity (Figs. 3B-D).

After introducing interindividual variation in the threshold

value, the only case in which signalers of the different quali-

ties signal at exactly the same value is when they are signaling

at the baseline value 0 (e.g., Fig. 3A, σ2 = 0.4 at q < 0.028).

Because we assume that threshold values follow a normal dis-

tribution, there is always at least a small proportion of the re-

ceiver population that have a threshold value less than 0 and thus

assess all signalers as high-quality. Therefore, there is always

some benefit to signaling at the baseline value, and this bene-

fit increases with increased variance in threshold values because

more of the receiver population will have a threshold value less

than 0.

Interestingly, in this model, the equilibrium signaling value

is never between 0 and T̄ (i.e., eq. [6] is always greater than T̄

or undefined). In other words, individuals either evolve to signal

at the baseline value of 0 or to signal at some intensity above the

mean threshold value T̄ . This is surprising because, in this model,

there is a benefit to signaling between 0 and the mean threshold

value. However, further exploration reveals that the net benefit

is always greater to signal either above T̄ or at 0. This is due to

the sigmoidal shape of the benefit function: below T̄ , the ben-

efit function curves toward lower values, but above T̄ it curves

toward higher values (Figs. 3B-D). The sigmoidal shape of the

benefit function emerges as a result of the normal distribution

of the receiver variance. Because costs are linear, this sigmoidal

shape results in the net benefit being greater at values above T̄

than below it. If the variation in receiver thresholds has a different

distribution, however, it is possible for an equilibrium signaling

value to fall between 0 and T̄ (see the appendix in the Support-

ing Information [section A3, Fig. A1] for an example assuming a

gamma distribution).

Individual-based Simulations
The analytical models above make many simplifying assump-

tions (e.g., ignoring genetics and assuming infinite population

sizes). To assess the robustness of our results and to ex-

plore further ecological complexity, we developed stochastic

individual-based simulations. These simulations track individu-

als’ genotypes and phenotypes and model the evolution of sig-

naling behavior. Unlike in the analytical models, these simu-

lations actually model adaptation via changes in allelic values

rather than simply maximizing the net benefit. For these simu-

lations, we chose to model the evolution of a mating signal in

a sexually reproducing species with two sexes (signalers and re-

ceivers). In principle, this same modeling framework could be

adapted to fit other types of signaling systems (e.g., intraspecific
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Figure 3. Variation in receiver threshold values restores reliability of signaling systems. (A) Relationship between quality and equilibrium

signal intensity given by equation (6). Dashed black line denotes the mean receiver threshold value. Colored curves indicate different

relationships for different values of variation in threshold value (σ2). (B-D) Relationship between signal intensity and fitness costs or

benefits for signalers of low (q = 0.2) and high (q = 0.6) quality for three different degrees of variation in the threshold value (σ2). Gray

distributions represent the distributions of threshold values in the receiver population. Arrows denote the equilibrium signal intensity,

s∗, for low- and high-quality individuals, which occurs where the difference between benefit and cost is the greatest. Parameters: T̄ = 1,

a = 0.5, and c0 = 0.

competition or predator-prey interactions). The C++ source

code for our individual-based simulations is available in the

Dryad Digital Repository (Peniston et al. 2020).

METHODS

Each run of the simulation modeled a population in which each

individual was either a signaler or a receiver. Each signaler had

a quality q (ranging from 0 to 1), which determined its cost of

signaling. Each receiver had a threshold T, which was used to

evaluate signalers (details below). Generations were overlapping

and population size was regulated by the number of mating sites

available K. The simulation was broken up into time steps, which

we will refer to as years. There was an annual sequence of events

that happened in the following order: mortality, filling of mat-

ing sites, reproduction (including signal assessment and mating;

Fig. 4).

Mortality occurred at the start of each year independent of

age or reproductive status. For signalers, quality and signal in-

tensity affected mortality such that M = [ac0 + a(1 − q)]s + m0,

where m0 is the baseline mortality, a is the rate at which the slope

of the cost function decreases with quality, c0 determines the min-

imum cost of signaling, and s is the signal intensity. Receivers

died with a fixed mortality of 2m0, which was higher than the

baseline signaler mortality to keep sex ratios relatively balanced.

Receivers occupied mating sites, from which they evaluated

the signals of signalers. There were only K mating sites available

each year. If there were more than K receivers in the population,

K receivers were randomly selected (without replacement) to oc-

cupy mating sites that year. Unselected receivers did not mate

that year. We assumed that there was no spatial structure to the

population such that all individuals had the same probability of

arriving at any site and all sites became unoccupied at the end of

the year.
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Figure 4. Life history diagram for the individual-based simula-

tions. The star indicates the start of the annual cycle. Silhouettes

of fiddler crabs (genus Uca) are included as visual examples for

signalers and receivers in a mating context.

Receivers selected signalers as mates by evaluating their sig-

nal intensity, s. Receivers had threshold assessment of signals

such that if a signaler’s signal intensity was above the receiver’s

threshold value T, the receiver evaluated the signaler as a high-

quality mate and if the signal intensity was below T, the receiver

evaluated the signaler as low-quality. Receivers mated with the

first signaler they evaluated as high-quality and did not mate

again that year. Each year, receivers evaluated up to N signalers.

If by that point no signalers were evaluated as high-quality, the

receiver mated with the final signaler that it evaluated regardless

of quality (i.e., threshold with last-chance option; Janetos 1980).

The threshold value of each receiver was randomly assigned at

birth (regardless of genotype) from a normal distribution with

mean T̄ and variance σ2. Each mated pair produced B offspring

per year and all offspring survived with a probability 0.5.

Each signaler had a trait, z(q), which determined its signal

intensity as a function of its quality. This trait was genetically

determined by 11 additive diploid loci, each with infinitely many

possible allelic values. Each locus determined the signaling value

when the signaler had a specific quality (broken up by increments

of 0.1). That is, locus 1 determined the signal intensity when the

signaler’s quality was 0.0, locus 2 determined the signal intensity

when the signaler’s quality was 0.1, and so on. This implemen-

tation allows signal intensity to be almost any function of qual-

ity. The phenotypic values of signal intensity for a given qual-

ity were determined by adding together the genotypic values of

each haplotype at the respective locus plus a random environmen-

tal component drawn from a zero-mean normal distribution with

variance e2. If an individual’s calculated phenotypic value was

less than 0, its phenotype was assigned to be 0. An individual’s

phenotype (signal intensity) was determined at birth and did not

change throughout its lifetime. Note that, because q is a contin-

uous quantity, but the trait z(q) is in increments of 0.1, signalers

evaluated their quality by rounding to the nearest increment of

0.1. Therefore, signalers could not perfectly evaluate their own

quality, which is a realistic assumption for many organisms (e.g.,

Percival and Moore 2010).

At birth, each offspring was randomly assigned to either

the signaling sex (signalers) or the receiving sex (receivers) and

each signaler was randomly (uniform distribution, 0-1) assigned

a quality q. Each haplotype of the offspring was assigned by ran-

domly selecting one of the alleles at each locus of the respective

parent (i.e., independent recombination). During birth, a muta-

tion occurred on each locus with probability µ. If a mutation oc-

curred, a random value drawn from a zero-mean normal distri-

bution with variance ρ2 was added to the value at that locus. Re-

ceivers were only carriers for this trait, and it did not affect their

preference.

Each run of the simulation was initiated with 2K individ-

uals whose genotypes were randomly assigned from a normal

distribution with mean T̄ and variance 0.2 (sex, quality, and

signal were randomly assigned in the same manner as they

were assigned at birth). To allow populations to reach selection-

mutation-drift balance, there was a 10,000-year “burn-in” period

at the beginning of the simulation. We used two different methods

for this burn-in period. In the first, receivers randomly selected

mates independent of signal and there was no cost of signaling.

This simply allowed the population to reach mutation-drift bal-

ance so that the initially assigned genotypes did not affect results.

In the second method, receivers assessed signals in a continu-

ous manner, where the probability of mating with a signaler was

[(rs)/(1 + ds)] + 0.05, where 0.05 is the baseline probability of

mating and r and d are the same as in equation (2). This latter

method models how signals evolve if receivers evolve threshold

assessment after previously having had continuous assessment.

In both cases, following the 10,000-year burn-in period, simula-

tions then ran for 20,000 years with threshold assessment. Results

were qualitatively similar using both methods for the 10,000-year

burn-in period. For simplicity, all presented results are for the

case in which receivers responded in a continuous fashion during

the burn-in period because there was less variation among runs

of those simulations (see Fig. A2 in the Supporting Information
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Figure 5. The relationship between signaler quality and sig-

nal intensity in the individual-based simulations. Compare to the

analytical model results shown in Figure 3A. The dashed black

line denotes the mean threshold value. Shaded areas represent

the mean of 10 runs of the simulation ±1 SD. Different colored

shading represents different levels of threshold variation (σ2).

Negative genotypic values were interpreted as zeros, as that is

how they affected phenotype. Parameters: T̄ = 1, a = 0.5, c0 = 0,

m0 = 0.15, K = 300, u = 0.25, ρ2 = 0.01, e2 = 0.0001, B = 5, and N

= 10.

for results of simulations with random mating during the burn-in

period).

RESULTS

The results of our individual-based simulations matched the qual-

itative predictions of our analytical model. As predicted by the

analytical model, with little variance in threshold values, sig-

nalers evolved to signal at relatively similar values whether they

were low- or high-quality; however, with greater variance, the

difference between signal values became greater (Fig. 5).

There was greater variance in the signal intensity of low-

quality individuals compared with high-quality ones both within

and among runs of the simulation (among run variation shown

in Fig. 5). This is likely because there was more genetic drift

at the loci associated with signaling when low-quality. Because

low-quality individuals were less likely to mate, there were fewer

opportunities for selection to act on these loci. Although low-

quality individuals signaled at lower intensity than high-quality

ones on average, in some runs of the simulation, genetic drift led

to low-quality individuals signaling at unexpectedly high signal

intensities.

The individual-based simulations provide additional infor-

mation about the phenotypic distribution of signalers in the pop-

ulation that cannot be gained by our analytical methods (Fig. 6).

These distributions show that even if the mean genotype of the

population was to always signal above the threshold value (as

was the case for σ2 = 0.004 and σ2 = 0.04 in Fig. 5), there were

Figure 6. The phenotypic distribution of signalers in the

individual-based simulations. Each panel shows the distributions

for the cumulative number of individuals in five runs of the sim-

ulation. The solid vertical line indicates the mean threshold value

of the receiver population. Parameters: T̄ = 1, a = 0.5, c0 = 0, m0

= 0.15, K = 300, u = 0.25, ρ2 = 0.01, e2 = 0.0001, B = 5, N = 10.

still individuals in the populations with signal intensities below

the threshold value. In other words, as long as there is variation

in threshold values, signal intensities can vary along a contin-

uum (Fig. 6). Furthermore, the greater the variation in thresh-

old values, the more uniform the distribution of signal intensities
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Figure 7. Results of the individual-based simulations for differ-

ent values for the maximum number of potential mates a receiver

could evaluate N. If a receiver did not encounter a signaler with a

signal intensity above the receiver’s threshold, it mated with the

final signaler it evaluated regardless of signal intensity. Each line

shows the mean genotypic values for 10 runs of the simulation.

Parameters: T̄ = 1, σ2 = 0.004, a = 0.5, c0 = 0, m0 = 0.15, K = 300,

u = 0.25, ρ2 = 0.01, e2 = 0.0001, B = 5.

(Fig. 6). For all simulation parameters, there was a peak in the

number of individuals signaling at an intensity of 0. This is be-

cause 0 is the minimum signal intensity and thus the tail of the

phenotypic distribution that would be below 0 was all clustered

into that phenotypic value.

One major difference between our analytical model and

individual-based simulations is that the simulations did not show

the sudden change from signaling at the baseline value to sig-

naling above the threshold value that was seen in the analytical

models (compare σ2 = 0.4 in Figs. 3A and 5). This disagreement

can be explained by considering the ecological assumptions of

our models. Recall in the analytical model that there was always

some benefit to signaling at the baseline value because threshold

values were normally distributed and thus some proportion of the

receiver population assessed all signal intensities as high-quality.

In essence, this logic assumes that the population is infinitely

large, which was obviously not the case in the individual-based

simulations.

However, in our individual-based simulations, a benefit of

signaling at the baseline value emerged in another way, which

was by receivers mating with the final signaler that they evaluated

regardless of its quality (i.e., the last-chance option). This pro-

vided signalers some chance of mating, even if their signal inten-

sity was below the threshold value of all receivers. The lower the

maximum number of signalers a receiver evaluated N, the greater

this baseline benefit, because there was an increased chance that

any given signaler was the final one a receiver evaluated. Reduc-

ing the value of N in the simulations resulted in sudden changes

in signal intensities similar to those seen in the analytical model

(Fig. 7). Furthermore, the lower the value of N, the higher the

quality at which this sudden change occurred. This pattern is in-

tuitive because with a greater baseline benefit, populations should

evolve to only signal above the baseline value when there is a

larger net benefit, which occurs at high qualities. Indeed, in the

extreme case of N = 1, which would amount to random mating,

we would expect all individuals to signal at the baseline value and

thus sustain the minimum signaling costs.

We also restructured simulations so that receivers did not

mate with the last mate that they evaluated and instead did not

mate at all if none of the N signalers evaluated had a signal in-

tensity above their threshold value (i.e., fixed-threshold without

a last-chance option; Roff 2015). In these simulations, mean sig-

naling values below the threshold value were less likely to evolve

(Fig. A3 in the Supporting Information). This is logical, because,

as with increasing the value of N in the simulations with a last-

chance option, this scenario decreases the benefit of signaling at

the baseline value. The only way a signaler can mate is if its sig-

nal intensity is above the threshold value of a receiver.

We also ran simulations in which variation was incorporated

into the signalers instead of the receivers. Biologically, this oc-

curs when a signal (a phenotype) is influenced by local environ-

ment conditions (i.e., phenotypic plasticity). In these simulations,

all receivers had the same threshold value and we incorporated

variation into the signalers by increasing the random environ-

mental component of the phenotype e2, which is equivalent to

decreasing the heritability of the signaling trait. As with varia-

tion in threshold values, in these simulations, signals once again

evolved so that higher quality individuals signaled at greater sig-

nal intensities than lower quality ones, and the strength of this

pattern increased with more variation in the random environmen-

tal component (Fig. A4 in the Supporting Information). This re-

sult occurs because there is selection for high-quality individuals

to signal farther above the threshold value to ensure that their phe-

notype (and their offspring’s phenotypes) is above the threshold

value regardless of the environmental effect. As above, in these

simulations, receivers mated with the last signaler evaluated, so

there was some benefit for low-quality individuals to signal be-

low the threshold value because they could reduce the costs of

signaling and still have a chance of being the last signaler a re-

ceiver evaluated.

COEVOLUTION OF SIGNALERS AND RECEIVERS

Up to this point, all of our models have assumed that the mean

threshold value of the receiver population does not evolve. In this

section, we present results from a model that we adapted from the

above individual-based simulations to explore the coevolution of

signalers and receivers. To do so, we assumed that a receiver’s

threshold value was determined by a single-locus quantitative

trait and that receivers had greater fecundity if they mated with

a higher quality signaler. These simulations were not intended
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to investigate all of the nuances of signaler-receiver coevolution,

but instead were intended to test whether the general conclusions

from our above models hold even with receiver evolution. These

simulations were identical to the individual-based simulation de-

scribed above except for the key differences mentioned below.

The receiver’s threshold value was determined by a single-

locus quantitative trait. All individuals (signalers and receivers)

had a genotypic value for this trait, but it was only expressed

in receivers. There was no genetic correlation between threshold

genotypes and signaling genotypes. Each receiver’s phenotypic

value of the threshold was their genotypic value plus a random

environmental component drawn from a zero-mean normal dis-

tribution with variance σ2.

Recall that in the original model, receivers did not acquire

any fitness benefits for mating with higher quality signalers. In

this version of the model, however, we wanted threshold values

to evolve, so we included fitness benefits for mating with higher

quality signalers. This was implemented by having receivers have

one additional offspring (B + 1 offspring) with a probability of

their mate’s quality (recall that quality ranges from 0 to 1).

The genotype for the threshold trait of offspring was simply

the average value of both of their parents. To speed up the pace of

evolution, we assumed that a mutation occurred with every birth

such that a random value drawn from a zero-mean normal distri-

bution with variance 0.02 was added to the offspring’s genotype.

These mutations added additional variance to the threshold val-

ues, a factor that was not included in our previous models (the

analytical model or other simulations). This difference precludes

quantitative comparisons of our previous models with the coevo-

lutionary models we present here, but we are still able to make

qualitative comparisons.

Simulations were initiated as in previously described simu-

lations. Unless otherwise specified (see Fig. A5 in the Support-

ing Information for exceptions), individuals’ initial threshold val-

ues were randomly assigned with a mean of 1 and variance 0.04.

For the 10,000-year “burn-in” period, individuals had continu-

ous assessment after which they evaluated signalers in a thresh-

old manner. After the burn-in period, simulations ran for 20,000

generations. This simulation length appeared to be long enough

for thresholds to reach a stable value (Fig. A5 in the Supporting

Information).

As in our previous models, these simulations showed that in-

creased variance in threshold values leads to a greater difference

between the signaling values of low- and high-quality signalers

(Fig. A6 in the Supporting Information), thus demonstrating that

the qualitative results of our previous models are unchanged,

even if receivers’ thresholds and signalers’ signals are allowed to

coevolve.

Discussion
Most previous models of signal evolution have assumed that

receivers assess continuous variation in a signal in a contin-

uous manner (e.g., Johnstone 1994; Grafen 1990a, 1990b). In

many species, however, receivers exhibit threshold responses in

which receivers respond to continuously varying signals in a bi-

nary fashion (e.g., Masataka 1983; Zuk et al. 1990; Reid and

Stamps 1997; Stoltz and Andrade 2010; Beckers and Wagner

2011; Robinson et al. 2011). We have shown that (1) invariant

threshold assessment of signals leads to all-or-nothing signals

(Broom and Ruxton 2011) or a breakdown of reliable signal-

ing systems, but (2) reliable signaling can be restored if varia-

tion is introduced either in the value of the threshold boundary

among receivers or in the translation of genotype to phenotype

among signalers. In addition, (3) when reliable signaling evolves,

the mean signal intensity of signalers will typically be above the

mean threshold value of receivers, but (4) the population of sig-

nalers will still show a continuum of signal intensities from well

below to well above the population mean threshold.

Our models emphasize the importance of variation among

receivers in maintaining reliable signaling systems. In natural

populations, it seems highly likely that threshold values will vary

among receivers to some degree because local environmental

conditions affect phenotypes. Indeed, in a mating context, there

is often considerable variation in mate choice among receivers

due to genetic, developmental, or environmental differences (Jen-

nions and Petrie 1997). In animals exhibiting categorical percep-

tion in particular, there is evidence of variation in category bound-

aries (Caves et al. 2018; Zipple et al. 2019; Caves et al. 2020) as

well as context dependence of categorical boundaries (Lachlan

and Nowicki 2015). Future empirical work should quantify the

degree of variation among receivers’ threshold values and more

directly investigate its effect on signal evolution. Empirical work

could also test conclusions (3) and (4) above by comparing the

distribution of signal intensities and threshold values in threshold

signaling systems.

Although our models explicitly considered signals whose re-

liability is maintained as a result of high- and low-quality sig-

nalers facing differential costs of signaling, a similar framework

also applies to signals whose reliability is maintained as a re-

sult of high- and low-need signalers receiving differential bene-

fits of signaling (Johnstone 1997). An example of this latter case

would be nestling birds begging for food from their parents. In

this scenario, the benefit of signaling (begging) increases more

rapidly for high-need nestlings than low-need ones. As is the case

for models with continuous assessment, the same general con-

clusions emerge from our threshold assessment models whether

we assume signalers have differential costs or benefits (see the
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appendix in the Supporting Information [section A2, Figs. A7

and A8] for differential benefits results).

Similarly, although we have only discussed among-receiver

variation in threshold values (i.e., interreceiver variation), the

same general patterns should hold if individual receivers vary in

their threshold values over time (intrareceiver variation). This in-

trareceiver variation might emerge from changes during develop-

ment or changes in environmental conditions, but it could also

be a result of variation in an individual receiver’s ability to dis-

criminate at a threshold boundary. That is, a receiver might mis-

takenly assess a signal as above its threshold when in actuality it

was not or vice versa. Our analytical model treats all these types

of variation identically; therefore, it predicts that either inter-

or intrareceiver variation in threshold values will maintain sig-

nal reliability. This suggests that although perceptual errors by

the receiver decrease the number of equilibrium signaling val-

ues in models with continuous assessment (Johnstone and Grafen

1992a), in models with threshold assessment, perceptual errors

might in fact increase the number of equilibrium signaling values.

Our individual-based simulations only explicitly modeled inter-

receiver variation, however. It would be useful for future studies

to explore intrareceiver variation more explicitly.

Our analytical models focus on pure fixed threshold assess-

ment, in which individual receivers evaluate any signal above

their threshold value as high-quality and below their threshold as

low-quality. However, there are different variants of threshold as-

sessment in which receivers’ responses follow a general threshold

rule but are context dependent (reviewed by Roff 2015). For in-

stance, there is evidence that female variable field crickets, Gryl-

lus lineaticeps, evaluate mates using a threshold strategy with a

last-chance option in which females use a threshold rule, but if a

female has evaluated N males and none of them were above the

threshold value, it mates with the final male encountered (Janetos

1980; Beckers and Wagner 2011). The results of our individual-

based simulations show that although our general conclusions

about signal evolution hold whether receivers follow as a pure

fixed threshold strategy or have a last-chance option, the specific

relationship between signaler quality and signal intensity will dif-

fer depending on the strategy. Moreover, with the last-chance

option, this relationship depends on the number of signalers

evaluated before mating with the final signaler. We have not eval-

uated other context-dependent threshold strategies (reviewed in

Roff 2015), but it is likely that these will also alter the specific

relationship between signaler quality and signal intensity.

In addition, we have only considered the evolution of signals

under relatively simple ecological scenarios in which reliable sig-

naling is maintained by differential signaling costs (or benefits),

but in more complicated scenarios, reliable signals can evolve

even without immediate signaling costs. For example, reliable

signaling can evolve without signaling costs when there are re-

peated interactions (Rich and Zollman 2016). Similarly, reliable

signaling might evolve via kin selection when individuals are sig-

naling among close relatives (e.g., begging in birds; Caro et al.

2016). Furthermore, our models do not explain the evolution of

dishonest signals (in our models, signals either evolve to be reli-

able or to contain no information). Dishonest signals (or “bluffs”)

can be maintained in otherwise reliable signaling systems by the

existence of frequency-dependent selection (Számadó 2017), a

factor that is not present in our models.

Another complexity we do not consider here is the abil-

ity of receivers to assess their own quality. Mutual assessment

plays an important role in signaling, particularly in the context

of animal contests where individuals might have to compare their

own resource holding potential to that advertised by their oppo-

nent (Arnott and Elwood 2009; Elwood and Arnott 2012). When

evaluating the signals of opponents, an individual might have a

threshold response, such that its giving-up decision is based on a

threshold signal value set by the individual’s own resource hold-

ing potential. Understanding how threshold responses affect sig-

nal evolution in such situations would be a valuable future direc-

tion of our work. It is worth noting, however, that despite many

examples of mutual displays during contests, there is surprisingly

little empirical evidence that contestants compare their own dis-

play to the display of their opponent (Elwood and Arnott 2012).

It is important to recognize that most of our models assume

there is a fixed mean threshold value for the receiver population.

If variations in threshold values among receivers are due to her-

itable differences, threshold values themselves will be subject to

natural selection and potentially change over time (Janetos 1980;

Real 1990; Bleu et al. 2012). We would expect the mean thresh-

old value to remain stable if threshold values are either physio-

logically constrained, as might be the case in some species with

categorical perception, or ecologically constrained, as might be

the case when the same perceptual machinery is used to assess

signals in addition to being used in some other ecological context

(e.g., female guppies, Poecilia reticulata, use the color orange for

mate assessment and food detection; Rodd et al. 2002).

The coevolution of threshold and signal does not change the

qualitative results of our models. Our individual-based simula-

tions with coevolution confirmed that the qualitative conclusions

of our models can still hold when selection causes receivers’

thresholds to evolve (Fig. A6 in the Supporting Information).

However, we only explored a limited set of ecological and ge-

netic assumptions in those simulations, and additional work is

necessary to more fully understand how the coevolution between

signalers’ signals and receivers’ thresholds affects the reliability

of signaling systems. For instance, in intraspecific signaling sys-

tems (e.g., mate choice), there is often a genetic correlation be-

tween receiver preference (here, the threshold value) and signal-

ing traits, which can lead to emergent evolutionary phenomena
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such as Fisherian runaway selection (Fisher 1930; Lande 1981;

Kirkpatrick 1982). Future studies should explore how threshold

responses by receivers affect these processes.
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