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Colour signals of many animals are surrounded by a high-contrast achro-
matic background, but little is known about the possible function of this
arrangement. For both humans and non-human animals, the background
colour surrounding a colour stimulus affects the perception of that stimulus,
an effect that can influence detection and discrimination of colour signals.
Specifically, high colour contrast between the background and two given
colour stimuli makes discrimination more difficult. However, it remains
unclear how achromatic background contrast affects signal discrimination
in non-human animals. Here, we test whether achromatic contrast between
signal-relevant colours and an achromatic background affects the ability of
zebra finches to discriminate between those colours. Using an odd-one-out
paradigm and generalized linear mixed models, we found that higher achro-
matic contrast with the background, whether positive or negative, decreases
the ability of zebra finches to discriminate between target and non-target
stimuli. This effect is particularly strong when colour distances are small
(less than 4 ΔS) and Michelson achromatic contrast with the background is
high (greater than 0.5). We suggest that researchers should consider focal
colour patches and their backgrounds as collectively comprising a signal,
rather than focusing on solely the focal colour patch itself.
1. Introduction
Information collected and processed via sensory systems is central to the
expression and modulation of animal behaviour. Signals are an especially
important source of information. Signals are defined as structures or behaviours
that have evolved to modify the behaviour of receivers [47] and that reliably
convey information benefiting, on average, both the signal sender and the
signal receiver [20,44]. Signals are used in many contexts of animal and plant
communication including, but not limited to, mate choice [41], intraspecific con-
flict [51], species recognition [56], predator avoidance [8,46] and mutualistic
interactions [27]. Although signals can be transmitted in many sensory modal-
ities (e.g. vision, olfaction and audition), they are only effective if they can be
accurately perceived and assessed by the receiver.

Colour signals are particularly interesting because colour perception is unu-
sually malleable, depending not only on the visual physiology of the receiver,
but also on environmental contextual factors such as illumination, transmission
medium (e.g. air versus water) and the visual background against which a
signal is displayed [41]. Although the effects of illumination and transmission
medium are well studied [41], fewer studies have addressed the effect of
visual background on the perception of colour signals, and those that do
have focused primarily on coloured backgrounds (e.g. [28,39]). This work has
demonstrated that high colour contrast between the background and target
stimuli (e.g. discriminating between two red stimuli on a green background)
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Figure 1. Colourful signals with achromatic backgrounds in birds. Many species of birds have colourful signals or ornaments displayed against largely achromatic
surrounding backgrounds that may affect detection and discrimination of the signal. (a) Painted finch (Emblema pictum), (b) European robin (Erithacus rubecula),
(c) red-bellied woodpecker (Melanerpes carolinus), (d ) red-winged blackbird (Agelaius phoeniceus), (e) zebra finch (Taeniopygia guttata) and ( f ) tufted titmouse
(Baeolophus bicolor). All images are from Wikimedia Commons. (Online version in colour.)
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increases colour discrimination thresholds in zebra finches
(Taeniopygia guttata) [28] and goldfish (Cassius auratus) [57],
and decreases the certainty with which chickens (Gallus
gallus) make discrimination decisions [39].

The above studies have generally considered the impact
of a coloured background on colour perception, but back-
grounds in many taxa are achromatic. For example, many
animals have skin, scales, fur or feathers that span the achro-
matic gamut from extremely black (e.g. [12,32]) to bright
white (e.g. [48]) and that may surround a patch of colour ser-
ving as a potential signal [14,15,34] (figure 1). Although
considerable work has been done on the effects of a high-con-
trast achromatic background around a functionally important
colour signal on attention and learning, particularly in the
context of aposematism [1,19,42], little is known about the
effects of high-contrast patterns on colour discrimination in
other functional contexts.

Studies of human perception of colour generate predic-
tions about how we expect non-human animal receivers’
responses to be shaped by achromatic, high-contrast back-
grounds. In humans, brightness discrimination between
achromatic stimuli is easiest when the brightness of the back-
ground is similar to the stimuli being discriminated between.
This effect becomes even more pronounced when the bright-
ness of the background is intermediate between that of
the two stimuli being discriminated [54] (figure 2). A similar
effect occurs with chromatic discrimination of coloured
stimuli. In this case, colour discrimination between the two
stimuli is easiest when the stimuli have a low chromatic con-
trast with the background (e.g. discriminating between two
orange stimuli on a red background is easier than discrimi-
nating between the same stimuli on a green background)
[49]. It is possible that these two effects interact, where achro-
matic contrast between two stimuli and the background has
an effect on colour discrimination. Evidence from humans
suggests that colour discrimination between two stimuli
depends on the achromatic contrast of both stimuli with the
background [37].

Understanding the effects of the contrast between the
background and the signal (referred to hereafter as ‘back-
ground contrast’) in animals is critical for understanding
signalling behaviour and signal evolution. Researchers
generally consider colour signals in isolation from their
backgrounds. But if the impact of the colour immediately sur-
rounding a focal colour patch on an animal (the local
background) shapes perception of the patch, considering
only the patch itself paints an incomplete picture of the sig-
nalling interaction. Instead, it is more appropriate to think
of the signal as being comprised both the colour patch and
its local background. Similarly, the larger environmental
background in which signalling occurs can affect the percep-
tion of a signal and can be manipulated by signallers through
means such as constructing bowers [17], clearing display
courts [50] or changing signalling locations to locate a



(a)

(b)

Figure 2. Effect of achromatic background contrast on brightness discrimi-
nation. Evidence from humans suggests that stimuli are easiest to
discriminate when placed on a background with low brightness contrast
[37,54]. We can demonstrate this effect using equally spaced achromatic
stimuli on a light grey (a) and dark grey (b) background. The arrows
mark the brightness of the background relative to the series of stimuli.
Stimuli that are closer in brightness to each background are more easily dis-
criminable, and this effect is most pronounced when the background has an
intermediate brightness to the two stimuli. This effect is apparent with colour
stimuli, as well, but because digital displays are highly variable, we opt here
to show only the achromatic version of this effect.

T NT

(T × NT) – B

(T × NT) + B
background contrast  = 

T – NT

T + NT
achromatic contrast  = 

T NT

B

Figure 3. Diagram of a foraging grid. Birds were presented with a foraging
grid containing eight coloured stimuli. The two target stimuli (T) were a
different colour than the six non-target stimuli (NT). All trials were repeated
on three different backgrounds (B): black, white and grey. To calculate back-
ground contrast for our analyses, we took the geometric mean double cone
catch from the target and non-target stimuli (given as the square root of the
product of the two double cone catches) and used it and the double cone
catch of the background to calculate Michelson contrast. The second value
used in our models was the achromatic Michelson contrast between the
target and non-target stimuli. (Online version in colour.)
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suitable background [18,24]. By isolating the effects of
local background contrast on the colour perception of
signal-relevant colours with behavioural experiments, we
can determine to what extent backgrounds may influence
the perception and assessment of colour signals.

Here, we examine whether the brightness of achromatic
backgrounds affects colour discrimination in the orange-red
range using zebra finches as a model. Zebra finches offer a
useful system to explore the effects of backgrounds in the context
of signalling because they use an orange–red sexual signal [5,33],
have largely achromatic feathers surrounding their colourful
beaks and cheek patches, and have established visual sensitivity
data [6]. Furthermore, previousworkon zebra finches provides a
validated experimental design to answer questions about their
colour discrimination capabilities (e.g. [9,10,59]).
2. Methods
(a) Experimental subjects
The birds used in this study were female zebra finches (n = 10;
age 2–26 months) obtained from a colony maintained by
R. Mooney at Duke University (IACUC A227-17-09). Birds were
housed in single cages (46 × 23 × 23 cm) and provided with a cut-
tlebone and two wooden perches. The room was kept on a 15 h :
9 h light : dark cycle and the birds were given birdseed (Kaytee
Supreme Finch Food) and water ad libitum. Testing was done
under Duke IACUC protocol A260-19-12.

(b) Colour stimuli
Colour stimuli were made using Munsell colour paper (Pantone
Corporation, Grand Rapids, MI, USA). We used a subset (colours
3–8) of the orange and red Munsell colours used in the Caves
et al. [9] study, which have been shown previously to represent
the range of beak coloration in zebra finch males [4,7,11] and
that are roughly evenly spaced in chromatic distance as perceived
by zebra finches [9]. This subset was chosen because colours 3–8
represent the full range of Munsell brightness levels used by
Caves et al. [9] (see electronic supplementary material, table S1
for Munsell classifications). To remain consistent with prior
work, we refer to the colours used in this study by the same
numbers used previously (for full list of stimulus numbers and
corresponding Munsell colours see electronic supplementary
material, table S1). To create the stimuli, 2.5 cm diameter circles
of Munsell colour paper were glued to card stock and covered
with a clear epoxy disc. Then, we attached small vinyl discs to
the back of the card stock that fit in the well of the foraging
grid (see below). In total, we created six sets of colour stimuli cor-
responding to colours 3 (the most red as viewed by humans)
through 8 (the most orange).

(c) Foraging grids
To test whether achromatic contrast with the background affects
colour discrimination, we created three sets of foraging grids:
white, grey and black. All grids consisted of two blocks made
from plastic home construction material (13.5 × 19 cm2) with
six evenly spaced wells per block. The top two rows of each
block were used to display stimuli (figure 3). Each block was
covered with a 3 mm thick piece of matte PVC foam (Acme
Plastics Inc, Woodland Park, NJ, USA) that was white, grey or
black. The average reflectances across the human-visible range
(400–700 nm) for the white, grey and black PVC foam pieces
were 82%, 26% and 6.9%, respectively. While zebra finches are
sensitive to ultraviolet (UV) light, the lighting used in our exper-
imental room produces very little UV light, so we consider only
the human-visible spectrum [9,58].

(d) Experimental protocol
We tested the birds’ ability to discriminate between colours along
a red-orange spectrum using an ‘odd-one-out’ testing paradigm.
The birds were tasked with uncovering the foraging grid wells
beneath two target stimuli before uncovering any non-target
stimuli, in exchange for a food reward of millet (for an image
of the experimental set-up, see electronic supplementary
material, figure S1). The two target stimuli were the same
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Figure 4. Discrimination test results. Mean (+/− s.d.) pass frequency over 10 one-apart (a) and two-apart (b) discrimination trials per bird. Results are segmented
by the background and, generally, pass frequencies for darker colours are lower on brighter backgrounds, and vice-versa. The dotted line on both graphs represents
the expected pass frequency if birds chose stimuli randomly (1 in 24).
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colour as each other, but they differed in colour from the six
non-target stimuli, all of the same colour. A trial was considered
successful if both target wells were uncovered before any non-
target wells within 2 min. We trained the birds to uncover the
target wells in four phases. First, birds were presented with fora-
ging grids that had millet in two wells, with target coloured discs
(colour 3 or colour 8) placed next to the wells. Then, once the
birds would reliably eat out of the target wells, we began to par-
tially cover wells with the discs. In the third phase, wells were
fully covered by the discs. Finally, we presented birds with the
same two target discs (either colour 3 or colour 8) surrounded
by six disks from the opposite end of the colour spectrum (e.g.
colour 8 if the target colour was 3). In all training and experimen-
tal trials, the locations of the target wells were selected randomly.
Food was removed from the cage approximately 5 h prior to
testing to ensure individuals were motivated to participate.

In our testing, each of the 10 birds completed 10 trials per
background (i.e. foraging grid colour), per colour combination.
In total, we had 15 combinations of target and non-target colours
that were one, two, three, four or five colour steps apart. On each
experimental day, the birds were presented with one refresher
trial, a comparison between colour 3 (the most red) and colour
8 (the most orange), followed by five experimental trials. With
the exception of the refresher trial, only one colour combination
was tested per day. We first tested birds on the easiest discrimi-
nation tasks (five colour steps apart or approximately 14
just-noticeable differences, hereafter abbreviated as JNDs) and
progressively moved to the hardest tasks (one colour step apart
or approx. 2.5 JNDs). Following Caves et al. [9], JNDs were calcu-
lated with the receptor noise-limited (RNL) model [52] using
photon catches calculated from the spectral sensitivity of the
zebra finch visual system [28]. All trials for a given background
were completed before changing the background. Once the
birds had completed 10 trials per colour combination on a
given background, we repeated the training and experimental
phases for the new background. All birds were tested first on
grey, then black, then white.
(e) Statistical analysis
To determine whether achromatic contrast between the
background and colour stimuli had an effect on colour dis-
crimination, we used the lme4 [3] package in R [60] to create
generalized linear mixed (GLM) effect models considering
different combinations of three fixed effects: (i) chromatic distance
between the target and non-target stimuli in JNDs, (ii) the Michel-
son achromatic contrast [35] between the target and non-target
stimuli and (iii) the Michelson achromatic contrast between the
geometric mean of the target stimuli and non-target stimuli and
the background (background contrast). We chose to use geometric
means because brightness perception is proportional (e.g. dou-
bling the number of photons reflected increases the perceived
brightness by the same amount regardless of the absolute
number of photons) [25]. Brightness values were calculated
using the photon catches from zebra finch double cones, which
are implicated in brightness perception [40]. Bird IDwas included
as a random effect in all models to account for individual variation
in task performance. Our proxy for discrimination ability was the
pass frequency for a given experimental comparison, where pass
frequency is the percentage of trials that a bird correctly selected
the two target stimuli before any non-target stimuli. We then com-
pared a selected set of models using the Akaike information
criterion (ΔAIC) to select the best model.
3. Results
Mean pass frequencies for one-apart trials (e.g. 3|4, 5|6) were
between 8.9% and 40% (figure 4a). The pass rates for two-apart
comparisons were higher than for one-apart comparisons and
ranged from 49% to 79% (figure 4b). Generally, for both the
one- and two-apart trials, the highest pass frequencies for a
given comparison were on backgrounds closest in brightness
to the target and non-target stimuli (e.g. dark red colours
were better discriminated on black backgrounds, when ‘back-
ground contrast’ was low, than on white backgrounds, see
below). Trials that were three or more colour steps apart all
had pass frequencies greater than 80%with little differentiation
between backgrounds suggesting that these tasks were suffi-
ciently easy for the birds to overcome any potential effect of
achromatic contrast with the background.

To determine whether achromatic contrast between the
target and non-target colour stimuli with an achromatic
background affected colour discrimination in the zebra
finches, we built GLM models with different combinations
of chromatic distance between the colour stimuli, Michelson
achromatic contrast between the two colour stimuli and the



Table 1. GLM model results. We created GLM models using different
combinations of chromatic distance, background contrast and brightness
ratio. Of our six models, the model with the lowest AIC was an additive
model including chromatic distance and background contrast as fixed
effects. Three other models had some support (0 < ΔAIC < 3) and all of
them included background contrast as a fixed effect.

model
Akaike
weight ΔAIC

chromatic distance + background

contrast

0.35 —

chromatic distance + background

contrast × stimulus contrast

0.26 0.6

chromatic distance + background

contrast + stimulus contrast

0.17 1.5

chromatic distance × background

contrast

0.13 2.0

chromatic distance × background

contrast + stimulus contrast

0.06 3.5

chromatic distance 0.01 6.7

0.2

0.4

0.6
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55%–60%
60%–65%
65%–70%
70%–75%
75%–80%

contrast against zebra finch grey

Figure 5. Model predictions of pass frequency. Using a LOESS model [23] to predict pass frequency as a function of background contrast (the achromatic Michelson
contrast between the target stimuli and background) and chromatic distance between the colour stimuli, we see that high background contrast (greater than 0.6)
reduces predicted pass frequency for a given chromatic distance, particularly when the chromatic distance is small. The dark grey box represents the range of
background contrast values that the Munsell colours used in this experiment would produce against the grey colour of male zebra finches. (Online version in colour.)

Table 2. Summary of most parsimonious model. Model estimates and 95%
confidence intervals for the effects of chromatic distance and achromatic
Michelson contrast between the stimuli and background. Increasing
chromatic distance makes discrimination easier (i.e. a higher pass frequency
in our experiments), while increasing background contrast makes
discrimination more difficult (i.e. a lower pass frequency). We also include
the marginal pseudo-R2 calculated using the MuMIn package in R [2].

predictor
point
estimate

95% CI
lower
bound

95% CI
upper
bound

chromatic

distance***

0.538 0.478 0.598

background

contrast**

−0.616 −1.025 −0.207

**p < 0.01; ***p < 0.001; marginal pseudo-R2 = 0.161.
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background, and the Michelson achromatic contrast between
the target and non-target stimuli (table 1). Only the one-apart
and two-apart data were used for the models because of the
80–100% pass rate for larger colour distances. We found the
model that best predicted pass frequency to be an additive
model with chromatic distance (ΔS) and background con-
trast as fixed effects. There were three other models with
0 < ΔAIC < 3, including two that had achromatic contrast
between the target and non-target stimuli as a fixed effect.
Because our model with the lowest AIC was also the most
parsimonious of those with meaningful support, we chose
that as our best model. Further supporting our lowest AIC
model as the best model, a weighted model yields an
almost identical estimate for the effect of background contrast
on pass frequency (−0.616 versus −0.6; electronic supplemen-
tary material, table S2). Chromatic distance has a stronger
effect on pass frequency than background contrast, consistent
with the findings of Miyahara et al. [37] that demonstrate
achromatic background contrast is a second-order contributor
to colour discrimination thresholds. Miyahara et al. [37] found
that changes in background brightness can increase colour dis-
crimination thresholds by as much as 0.4 JNDs in their
experimental paradigm. Our model predicts that pass fre-
quency declines by 6% for every 0.1 unit increase in
Michelson achromatic contrast between the two colour stimuli
and the background. Finally, we used a local regression
(LOESS) model to interpolate pass frequency as a function of
the chromatic distance between non-target and target stimuli
(ΔS) and the achromatic Michelson contrast between colour
stimuli and the background. Using this local regression, we
found that reduced discrimination occurs primarily in contexts
of high-contrast backgrounds (background contrast greater
than 0.5) and small chromatic distances between the colour
stimuli (figure 5) table 2.
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4. Discussion
Here we demonstrate that the brightness of achromatic back-
grounds can affect colour discrimination in zebra finches in
the orange–red range. Specifically, high achromatic contrast
between the colour stimuli and the background impedes
colour discrimination when the chromatic distance between
two stimuli is small (less than 4 ΔS). In essence, colour dis-
crimination thresholds are dictated not only by the relative
colour distance of the two stimuli (Weber’s law), but also
their achromatic contrast with an achromatic background.
To our knowledge, this is the first demonstration of the
brightness of achromatic backgrounds affecting colour dis-
crimination in a non-human animal.

Our findings are consistent with results from humans
showing that colour discrimination thresholds can change
with achromatic background contrast [37] and support a grow-
ing body of research suggesting that chromatic and achromatic
channels are not entirely separate in birds [26,29,36,38].
Although visual models such as the RNL model assume zero
achromatic contrast between a stimulus and background in
their formulation [52], in practice, visual models are used to
study colour vision in more natural contexts where the bright-
ness of the background can vary dramatically relative to the
brightness of the signal [30,31,45]. Our results for achromatic
backgrounds, and previous experiments on the effects of back-
ground colour on discrimination [28,39,57], support more
conservative usage of visual models when studying inter-
actions that take place outside of the laboratory, where
several assumptions of these models are violated. They also
support continued work to behaviourally test the assumption
results of such models (as advocated for elsewhere [38]).

In addition to supporting conservative use of visual
models, the effect of background achromatic contrast on
colour discrimination has important implications for under-
standing signalling systems. Two primary features of
effective signals are detectability and discriminability [22].
Detectability describes how easily a signal is perceived; sig-
nals that are poorly detected by receivers are less likely to
evolve. Once a signal is detected, it may also need to be dis-
criminated from signals of another type, or, in the case of
assessment signals, signals of the same type [55]. As detect-
ability is generally enhanced by increasing visual contrast
with the background, and discriminability is enhanced by
minimizing contrast with the background [1,16,28,43,53],
there is a potential trade-off between the two. This trade-off
may lead to adaptations in coloration and signalling behav-
iour such as more variable coloration of signals in animals
where the signal contrasts strongly with the background
[13], binary threshold responses to circumvent the need
for fine-scale discrimination [21], or additional modes of
assessment in animals with high-contrast signals, such as
courtship dances in ultra-black birds of paradise [32].
Furthermore, this trade-off may also be influenced by the
visual physiology of the receiver(s). For example, differences
in visual sensitivity between conspecifics and predators may
constrain colour signals to be less detectable to predators,
lowering the optimal contrast between the signal and back-
ground, thus making the signal more discriminable.

Our results on achromatic backgrounds combined with
previous work on coloured backgrounds prompt further
study into the evolution of coloration in birds. Instead of think-
ing of colour signals as solely the focal colour patch, we suggest
that signals be considered as the combination of the focal
colour patch and the local background, even when the local
background is achromatic. Local background colours and
brightnesses can evolve in concert with focal patches or offer
an additional axis of diversification in the evolution of signal
form. By studying signals under this framework, we may
reveal diversity in bird colour signals that arise as signals
begin to diverge between different populations or species.

Quantifying both the environmental background and the
local background formed by integumentary structures
immediately surrounding colour signals in future work will
provide valuable data to test the predictions made here and
assess the effects of background contrast on natural signalling
behaviours. Additionally, testing the effects of background
contrast in signalling interactions will allow researchers to
determine the relative contributions of chromatic contrast,
achromatic contrast, colour memory and higher-level percep-
tual mechanisms, furthering our understanding of signal
form and evolution.
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